Add UE5 A.1

This commit is contained in:
Ivaylo Ivanov 2021-11-15 18:35:44 +01:00
parent 6b7ca28fe0
commit 711a2a1104

View File

@ -13,25 +13,25 @@ type Nat0 = Int
-- Die selbstdefinierte Typklasse Menge_von:
class Eq a => Menge_von a where
leer :: [] a
vereinige :: [] a -> [] a -> [] a
schneide :: [] a -> [] a -> [] a
ziehe_ab :: [] a -> [] a -> [] a
ist_teilmenge :: [] a -> [] a -> Bool
ist_obermenge :: [] a -> [] a -> Bool
ist_element :: a -> [] a -> Bool
ist_leer :: [] a -> Bool
sind_gleich :: [] a -> [] a -> Bool
anzahl :: a -> [] a -> Nat0
-- Protoimplementierungen
leer = []
vereinige xs ys = xs ++ ys
ist_teilmenge xs ys = ist_obermenge ys xs
ist_obermenge xs ys = ist_teilmenge ys xs
ist_element x xs = anzahl x xs >= 1
ist_leer xs = xs == leer
sind_gleich xs ys = ist_teilmenge xs ys && ist_teilmenge ys xs
leer :: [] a
vereinige :: [] a -> [] a -> [] a
schneide :: [] a -> [] a -> [] a
ziehe_ab :: [] a -> [] a -> [] a
ist_teilmenge :: [] a -> [] a -> Bool
ist_obermenge :: [] a -> [] a -> Bool
ist_element :: a -> [] a -> Bool
ist_leer :: [] a -> Bool
sind_gleich :: [] a -> [] a -> Bool
anzahl :: a -> [] a -> Nat0
-- Protoimplementierungen
leer = []
vereinige xs ys = xs ++ ys
ist_teilmenge xs ys = ist_obermenge ys xs
ist_obermenge xs ys = ist_teilmenge ys xs
ist_element x xs = anzahl x xs >= 1
ist_leer xs = xs == leer
sind_gleich xs ys = ist_teilmenge xs ys && ist_teilmenge ys xs
-- Weitere Typen:
@ -52,121 +52,132 @@ data PH_ElemTyp a b c d e = A a | B b | C c | D d | E e deriving (Eq,Show)
data PH_ElemTyp' q r s = Q q | R r | S s deriving (Eq,Show)
-- Simple helper functions
roman_to_nat :: Zahlraum_0_10 -> Nat0
roman_to_nat N = 0
roman_to_nat I = 1
roman_to_nat II = 2
roman_to_nat III = 3
roman_to_nat IV = 4
roman_to_nat V = 5
roman_to_nat VI = 6
roman_to_nat VII = 7
roman_to_nat VIII = 8
roman_to_nat IX = 9
roman_to_nat X = 10
roman_to_nat F = -1
nat_to_roman :: Nat0 -> Zahlraum_0_10
nat_to_roman 0 = N
nat_to_roman 1 = I
nat_to_roman 2 = II
nat_to_roman 3 = III
nat_to_roman 4 = IV
nat_to_roman 5 = V
nat_to_roman 6 = VI
nat_to_roman 7 = VII
nat_to_roman 8 = VIII
nat_to_roman 9 = IX
nat_to_roman 10 = X
nat_to_roman n
| n > 10 = F
| n < 0 = F
| otherwise = error "Could not recognize input" -- this should not happen
is_correct_num :: Zahlraum_0_10 -> Bool
is_correct_num n =
case n of
F -> False
_ -> True
-- Aufgabe A.1
instance Num Zahlraum_0_10 where
...
{- Knapp, aber gut nachvollziehbar geht die Instanzbildung fuer Num folgendermassen vor:
...
-}
(+) n n' = add_r n n'
(-) n n' = diff_r n n'
(*) n n' = mult_r n n'
fromInteger n = nat_to_roman (fromInteger n)
add_r :: Zahlraum_0_10 -> Zahlraum_0_10 -> Zahlraum_0_10
add_r n n'
| is_correct_num n == False || is_correct_num n' == False = F
| otherwise = nat_to_roman sum_r
where
a = roman_to_nat n
b = roman_to_nat n'
sum_r = a + b
diff_r :: Zahlraum_0_10 -> Zahlraum_0_10 -> Zahlraum_0_10
diff_r n n'
| is_correct_num n == False || is_correct_num n' == False = F
| otherwise = nat_to_roman dif_r
where
a = roman_to_nat n
b = roman_to_nat n'
dif_r = a - b
mult_r :: Zahlraum_0_10 -> Zahlraum_0_10 -> Zahlraum_0_10
mult_r n n'
| is_correct_num n == False || is_correct_num n' == False = F
| otherwise = nat_to_roman prod_r
where
a = roman_to_nat n
b = roman_to_nat n'
prod_r = a * b
-- Aufgabe A.2
instance Eq Funktion where
...
instance Show Funktion where
...
{- Knapp, aber gut nachvollziehbar gehen die beiden Instanzbildungen fuer
Eq und Show folgendermassen vor:
...
-}
-- instance Eq Funktion where
-- ...
-- instance Show Funktion where
-- ...
-- Aufgabe A.3
instance Menge_von Int where
...
instance Menge_von Zahlraum_0_10 where
...
instance Menge_von Funktion where
...
{- Knapp, aber gut nachvollziehbar gehen die drei Instanzbildungen fuer
Menge_von folgendermassen vor:
...
-}
-- instance Menge_von Int where
-- ...
-- instance Menge_von Zahlraum_0_10 where
-- ...
-- instance Menge_von Funktion where
-- ...
-- Aufgabe A.4
instance (Eq a,Eq b) => Menge_von (Paar a b) where
...
instance Eq a => Menge_von (Baum a) where
...
{- Knapp, aber gut nachvollziehbar gehen die beiden Instanzbildungen fuer
Menge_von folgendermassen vor:
...
-}
-- instance (Eq a,Eq b) => Menge_von (Paar a b) where
-- ...
-- instance Eq a => Menge_von (Baum a) where
-- ...
-- Aufgabe A.5
instance Eq a => Eq (ElemTyp a) where
...
instance Show a => Show (ElemTyp a) where
...
{- Knapp, aber gut nachvollziehbar gehen die beiden Instanzbildungen fuer
Eq und Show folgendermassen vor:
...
-}
-- instance Eq a => Eq (ElemTyp a) where
-- ...
-- instance Show a => Show (ElemTyp a) where
-- ...
-- Aufgabe A.6
instance Eq a => Menge_von (ElemTyp a) where
...
{- Knapp, aber gut nachvollziehbar geht die Instanzbildung fuer
Menge_von folgendermassen vor:
...
-}
-- instance Eq a => Menge_von (ElemTyp a) where
-- ...
-- Aufgabe A.7
instance (Eq a,Eq b,Eq c,Eq d,Eq e) => Menge_von (PH_ElemTyp a b c d e) where
...
{- Knapp, aber gut nachvollziehbar geht die Instanzbildung fuer
Menge_von folgendermassen vor:
...
-}
-- instance (Eq a,Eq b,Eq c,Eq d,Eq e) => Menge_von (PH_ElemTyp a b c d e) where
-- ...
-- Aufgabe A.8
instance (Eq p,Eq q,Eq r) => Menge_von (PH_ElemTyp' p q r) where ...
{- Knapp, aber gut nachvollziehbar geht die Instanzbildung fuer
Menge_von folgendermassen vor:
...
-}
-- instance (Eq p,Eq q,Eq r) => Menge_von (PH_ElemTyp' p q r) where ...