This repository has been archived on 2021-11-27. You can view files and clone it, but cannot push or open issues or pull requests.
fprog2021WS/code/Aufgabe1.hs

106 lines
3.9 KiB
Haskell

module Angabe1 where
{- 1. Vervollstaendigen Sie gemaess Angabentext!
2. Vervollständigen Sie auch die vorgegebenen Kommentaranfänge!
3. Loeschen Sie keine Deklarationen aus diesem Rahmenprogramm, auch nicht die Modulanweisug!
4. Achten Sie darauf, dass `Gruppe' Leserechte fuer Ihre Abgabedatei hat!
-}
type Nat0 = Int
type Zeichenreihe = String
type Teilzeichenreihe = String
type IstTeilzeichenreihe = Bool
type Zerlegungszeuge = (Zeichenreihe,Zeichenreihe,Zeichenreihe)
type Zerlegungszeugen = [Zerlegungszeuge]
-- Aufgabe A.1
{-
Solution:
- if both strings are the same, True
- if the second string is empty, True
- if the second string is longer than the first, False
- otherwise, compare the first characters of both strings and call the function recursively again.
If the second string is contained in the first string, it will get equal to [] eventually and the function will return True.
If it is not, the first string will get smaller than the second eventually and the function will return False
-}
ist_tzr :: Zeichenreihe -> Teilzeichenreihe -> IstTeilzeichenreihe
ist_tzr z t
| t == z = True
| t == [] = True
| length t > length z = False
| otherwise =
if head z == head t then
ist_tzr (tail z) (tail t)
else
ist_tzr (tail z) t
-- Aufgabe A.2
{-
Solution:
- the base cases are as follows:
- both strings are empty, return a triple with empty strings
- the second string is empty, return a triple with empty strings as first two elements and the whole first string as a third.
The problem description states that the split doesn't matter, so we take this because it is easy and cheap to do :)
- the second string is not a subset of the first string, return the "error triple"
- for handling the other cases:
- we find the position of the last subset string in the first string
- we take all of the characters until this position - this is the first element of the triple
- we then take all of the characters after this position summed with the length of the second string - this is the third element of the triple
-}
tzr_zeuge :: Zeichenreihe -> Teilzeichenreihe -> Zerlegungszeuge
tzr_zeuge [] [] = ("", "", "")
tzr_zeuge z [] = ("", "", z)
tzr_zeuge z t
| not (ist_tzr z t) = ("", t ++ t, "")
| otherwise =
let pos = (find_tzr_position z t 0) - 1
pre = take pos z
suf = drop (pos + (length t)) z
in (pre, t, suf)
-- find the index of the last occurrence of t in z
find_tzr_position :: Zeichenreihe -> Teilzeichenreihe -> Nat0 -> Nat0
find_tzr_position (z:zs) t n
| not (ist_tzr (z:zs) t) = n
| otherwise = find_tzr_position zs t (n + 1)
-- Aufgabe A.3
{- Knapp, aber gut nachvollziehbar geht tzr_zeugen folgendermassen vor:
...
-}
tzr_zeugen :: Zeichenreihe -> Teilzeichenreihe -> Zerlegungszeugen
tzr_zeugen [] [] = []
tzr_zeugen z t
| not (ist_tzr z t) = []
| otherwise = []
-- Aufgabe A.4
{-
Solution:
- we handle the case when the second string is empty - the result is always the length of the first string + 1
- if the second string is not a substring of the first one, return 0 as a result
- otherwise, count how many times the second string occurs in the first string by counting how many times the first string can be "cut" on the position of the second string
-}
wieOft :: Zeichenreihe -> Teilzeichenreihe -> Nat0
wieOft z [] = (length z) + 1
wieOft z t
| not (ist_tzr z t) = 0
| otherwise = count_sub_string z t 0
--- find how many times a substring occurs in a string
count_sub_string :: Zeichenreihe -> Teilzeichenreihe -> Nat0 -> Nat0
count_sub_string z t n
| not (ist_tzr z t) = n
| otherwise =
let
pos = (find_tzr_position z t 0) - 1
in count_sub_string (take pos z) t (n + 1)