Cryptocurrencies (WS2022/23) Dr. Zeta Avarikioti, Prof. Matteo Maffei

Kerma: Protocol Description

Project Description

For this course, we will develop our own blockchain. Each student will write their own in-
dependent implementation of a node for our blockchain in their programming language of
choice. This document outlines how the system will work and how nodes will communicate.

During your implementation, be aware that neighbouring nodes can be malicious. Your imple-
mentation must be resilient to simple and complex attacks. Simple attacks can be the supply
of invalid data. Complex attacks can involve signatures, proof-of-work, double spending, and
blocks, all of which must be validated carefully.

The chain is a static difficulty proof-of~-work UTXO-based blockchain over a TCP network pro-
tocol. The chain is called Kerma, but you should name your node something else.

Networking

The peer-to-peer network works over TCP. The default TCP port of the protocol is 18018, but
you can use any port. If your node is running behind NAT, make sure your port is forwarded.

Bootstrapping

Your node will initially connect to a list of known peers. From there, it will build its own list
of known peers. We will maintain a list of bootstrapping peer IPs / domains in TUWEL as they
become available.

Data Validation

Your client must disconnect from its peer in case it receives invalid data. Be rigorous about
network data validation and do not accept malformed data. Log any incorrect data received
to help us with debugging.

1 Cryptographic Primitives

Hash

We use SHA256 as our hash function. This is used both for content-addressable application
objects as well as proof-of-work. When hashes appear in JSON, they should be in hexadecimal
format as described in below.



Cryptocurrencies - Project Kerma

Signatures

We use Ed25519 digital signature scheme. Public keys and signatures should be byte-encoded
as described in RFC 8032. A library will typically take care of this process, e.g., crypto/ed25519
in Go programming language. Once a signature or public key is byte-encoded, it is converted
to hex in order to represent as a string within JSON. Whenever we refer to a “public key" or a
“signature" in this protocol, we mean the byte-encoded and hexified data.

Hexification

Hex strings must be in lower case.

2 Application Objects

Application objects are objects that must be stored by each node. These are content-addressed
by the SHA256 hash of their JSON representation. Therefore, it is important to have the same
JSON representation as other clients so that the same objects are addressed by the same
hash. You should normalize your JSON and ensure it is in canonical JSON form. The examples
in this document contain extra whitespace for readability, but these should not be sent over
the network. The SHA256 of the JSON contents is the objectid.

An application object is a JSON dictionary containing the type key and further keys depend-
ing on its type. There are two types of application objects: transactions and blocks. Their
objectids are called txid and blockid, respectively.

Transactions

This represents a transaction and has the type transaction. It contains the key inputs
containing an array of inputs, and the key outputs containing an array of outputs.

An input contains a pointer to a previous output and a signature. An input is a dictionary
containing two keys: outpoint key (i.e., thee previous output) and a sig key. The outpoint
key contains a dictionary of two keys: txid and index. The txid is the transaction identifier
of the previous transaction, while the index is the natural number (zero-based) indexing an
output within that transaction. The sig key contains the signature.

Signatures are created using the private keys corresponding to the public keys that are
pointed to by their respective outpoint. Signatures are created on the plaintext which con-
sists of the transaction they (not their public keys!) are contained within, except that the sig
values are all replaced with null. This is necessary because a signature cannot sign itself.

An output is a dictionary with keys value and pubkey. The value is a non-negative integer
indicating how much value is carried by the output. The value is denominated in picaker,
the smallest denomination in Kerma. 1 ker = 10'? picaker. The pubkey is a public key of the



Cryptocurrencies - Project Kerma

recipient of the money.

{
"type":"transaction",
"inputs":[
{
"outpoint": {
"txid":"f71408bf847d7dd15824574a7cd4afdfaaa2866286910675cd3fc371507aal196",
"index":0
b,
"sig":"3869a9ea9%7ed926a7c8b30fb71f6ed151a132b03fd5dae764f015c98271000e7
da322dbcfc97af7931c23c0fae060e102446ccff0f54ec00f9978f3a69a6f0f"
}
1,
"outputs":[
{
"pubkey":"077a2683d776a71139fd4db4d00c16703ba0753fc8bdc4bd6fc56614e659cde3",
"value":5100000000
}
]
}

Transactions must satisfy the weak law of conservation: The sum of input values must be
equal or exceed the sum of output values. Any remaining value can be collected as fees by
the miner confirming the transaction.

If the transaction is a coinbase transaction, then it will not contain an inputs key but it will
contain a height key with the block’s height as the value. The coinbase transaction cannot be
spent in the same block.

{
“"type":"transaction",
"height":128,
"outputs":[

{
"pubkey":"077a2683d776a71139fd4db4d00c16703ba0753fc8bdc4bd6fc56614e659cde3 ",
"value":50000000000

}

]
}
Blocks

This represents a block and has the type block. It contains the following keys: txids, which
is a list of the transaction identifiers within the block, nonce, which is a 32-byte hexified value,
previd, which is the block identifier of the previous block in the chain, created, which is an
(integer) UNIX timestamp in seconds, and T which is a 32-byte hexadecimal integer and is
the mining target. Optionally it can contain a miner field and a note field, which can be any



Cryptocurrencies - Project Kerma

ASClII-printable strings up to 128 characters long each.

{
"type":"block",
"txids":[

"740bcfb434c89abe57bb2bc80290cd5495e87ebf8cd0dadb076bc50453590104"

I,
"nonce":"a26d92800cf58e88a5ecf37156c031a4147c2128beeaflcca2785¢93242a4c8b",
"previd":"0024839ec9632d382486ba7aac7e0bda3b4bdald4bd79be9ae78e7e1e813ddd8",
"created":1622825642,
"T":"003a000000000000000000000000000000000000000000000000000000000000",
"miner":"sx*x",
"note":"A sample block"

¥

Block validity mandates that the block satisfies the proof-of~-work equation: blockid < T.

The genesis block has a null previd. This is our genesis block:

{
"T":"00000002af000000000000000000000000000000000000000000000000000000",
"created":1624219079,
"miner":"dionyziz",
"nonce":"0000000000000000000000000000000000000000000000000000002634878840",

"note":"The Economist 2021-06—-20: Crypto-miners are probably to blame for the graphics-chip shortage",

"previd":null,
"txids":[

1,
n type n : n blockll

}

All valid chains must extend genesis. Each block must have a timestamp which is later than
its predecessor but not after the current time.

The transaction identifiers (txids) in a block may contain one coinbase transaction. This
transaction must be the first in txids. That transaction has no inputs but has a height key
containing the height of the block the coinbase transaction included in. It has exactly one
output which generates 50 - 10'2 new picaker and also collects fees from the transactions
confirmed in the block. The value in this output cannot exceed the sum of the new coins plus
the fees, but it can be less than this. The height in the coinbase transaction must match the
height of the block the transaction is contained in. This is so that coinbase transactions with
the same public key in different blocks are distinct.

All blocks must have a target T of:
00000002af0OOO0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOEOEOEO.

The genesis blockid is:
00000000a420b7cefa2b7730243316921ed59ffe836el11ca3801f82a4f5360e.

Check this to ensure your implementation is performing correct JSON canonicalization.



Cryptocurrencies - Project Kerma

3 Messages

Every message exchanged by two peers over TCP is a JSON message. These JSON messages
are separated from one another using '\n’. The JSON messages themselves must not contain
new line endings ('\n’), but they may contain escaped line endings within their strings.

Every JSON message is a dictionary. This dictionary always has at least the key type set,
which is a string and defines the message type. Each message may contain its own keys
depending on its type.

Hello

When you connect to another client, you must both send a { "type": "hello" } message.
The message must also contain a version key, which is always set to 0.8.0. If the version you
receive differs from 0.8.x you must disconnect. The message can also contain an agent key,
with a string description of the node software name and version the node is running.

You must exchange a hello message both ways before you exchange any other message. If a
message is sent prior to the hello message, you must close the connection. Messages can be
sent in any order after that.

{
II.I:}’:F)e n . n hello n ,
"version":"0.8.0",
"agent":"Kerma-Core Client 0.8"

}

Error

Optionally, you can send objects with implementation-specific error messages to describe any
exceptions encountered. An error object should be of type error and contain an error key
with a string value that describes the error at hand.

{

"type":"error",

"error":"Unsupported message type received"
}
GetPeers

If you want to know what peers are known to your peer, you send them a getpeers message.
This message has no payload and must be responded to with a peers message.



Cryptocurrencies - Project Kerma

"type": "getpeers”

Peers

This message can be volunteered or sent in response to a getpeers message. It contains a
peers key which is an array of peers. Every peer is a string in the form of <host>:<port>.
The default port is 18018 but other ports are valid. Inclusion of the port in the string is
mandatory. Examples for different types of hosts are provided below.

{
"type":"peers",
"peers":[
"sxxxk,com:18018", /x dns */
"138.197.191.170:18018", /* ipv4d x*/
"[fe80::f03c:91 ff:fe2¢c:5a79]:18018" /x ipv6 =*/
]
}

When sending a peers message, a node can include itself in the list if it is listening for con-
nections.

GetObject

This message requests an object addressed by the given hash. It contains an objectid key
which is the address of the object.

{
"type":"getobject",
"objectid":"0024839ec9632d382486ba7aac7e0bda3b4bdald4bd79be9ae78e7e¢1e813ddd8"
}
IHaveObject

This message advertises that the sending peer has an object with a given hash addressed by
the objectid key. The receiving peer may request the object (using getobject) in case it
does not have it.

{

"type": "ihaveobject",

"objectid": "0024839ec9632d382486ba7aac7e0bda3b4bdald4bd79be9ae78e7e1e813ddd8"
}

In our gossiping protocol, whenever a peer receives a new object and validates the object,
then it advertises the new object to its peers.



Cryptocurrencies - Project Kerma

Object

This message sends an object from one peer to another. This can be voluntary, or as a response
to a getobject message. It contains an object key which contains the object in question.

{

"type": "object",

"object": {
"type": "block",
"txids": [

"740bcfb434c89abe57bb2bc80290cd5495e87ebf8cd0dadb076bc50453590104 "

1,
"nonce": "a26d92800cf58e88a5ecf37156c031a4147c2128beeaflcca2785¢c93242a4c8b",
"previd": "0024839ec9632d382486ba7aac7e0bda3b4bdald4bd79be9%9ae78e7e1e813ddd8",
"created": "1622825642",
"T": "003a000000000000000000000000000000000000000000000000000000000000"

GetMempool

Request the mempool of the peer with a message of type getmempool. There is no payload in
this message. The peer responds with a mempool message.

{

"type": "getmempool"
}
Mempool

This message, with type mempool, is sent as a response to a getmempool message, or it can
be volunteered. It includes a list of all transaction identifiers that the sending peer has in its
mempool, i.e., are not yet confirmed. These are included in an array with the key txids.

{
"type": "getmempool",
"txids": []

}

GetChainTip

Request the current blockchain tip of the peer with a message of type getchaintip. There is
no payload in this message.



Cryptocurrencies - Project Kerma

{

"type": "getchaintip"
}
ChainTip

This message, with type chaintip, is sent as a response to the getchaintip message, or it
can be volunteered. It includes a single key called blockid with the block identifier of the
current tip.

{
"type": "chaintip",
"blockid": "0024839ec9632d382486ba7aac7e0bda3b4bdald4bd79be9ae78e7e1e813ddd8"

}

The receiving peer can then use getobject to retrieve the block contents, and then follow up
with more getobject messages for each previd recursively to retrieve the whole blockchain
as needed.



