cpair.c 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/**
 * @file cpair.c
 * @author Ivaylo Ivanov 11777707
 * @date 08.12.2018
 *
 * @brief Main program module.
 *
 * A program that searches for the closest pair of points in a set of 2D-points
 *
 *    SYNOPSIS
 *    cpair
 *
 *    EXAMPLE
 *    $ cat 1.txt
 *    4.0 4.0
 *    -1.0 1.0
 *    1.0 -1.0
 *    -4.0 -4.0
 *    $ ./cpair < 1.txt
 *    -1.000000 1.000000
 *    1.000000 -1.000000
 *
 *
 * The program accepts an array of 2D-points as an input from stdin. The input ends at EOF.
 *
 * The program does the following:
 *  - No output if the array has one point
 *  - The points if the array has 2 points
29 30 31
 *  - Otherwise, the array is split in 2 parts based on the mean of X and sent to 2 different paralell child processes.
 *    The parent watches for the return code of the children and terminates with an error if any of the children exit
 *    with anything other than success.
32 33 34 35 36 37 38 39 40 41 42
 *
 * Algorithm description when there are more than 2 points:
 *  - P1 and P2 are the closest pairs for the first and the second part respectively.
 *  - Go through all of the pairs between the points from the first half with the second half and save the shortest one in P3.
 *  - Compare P1, P2 and P3 and return the shortest one to stdout.
 *
 **/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
43 44 45
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
46

47 48
/// Node struct for linked list
typedef struct node {
49 50 51 52 53
    /**
     * points[0] - contains the X coordinate of the point
     * points[1] - contains the Y coordinate of the point
     *
     **/
54 55 56
    float points[2];
    struct node * next;
} node_t;
57

58 59
float get_x_mean(node_t * head);
float get_distance(float x1, float x2, float y1, float y2);
60 61
node_t * find_shortest_distance(node_t * list);
int wait_for_termination(pid_t child);
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
int main(int argc, char *argv[]) {
    if (argc > 1) {
        puts("The command takes no additional arguments.");
        puts("Usage: cpair");
        exit(EXIT_FAILURE);
    }

    fprintf(stderr, "Process id: %d\n", getpid());
    /**
     *  Create the pipe file descriptors and inititalize the pipes
     *
     * fd[0] - input side of pipe
     * fd[1] - output side of pipe
     *
     **/
    int in_pipe_a[2], out_pipe_a[2], in_pipe_b[2], out_pipe_b[2];

    if(pipe(in_pipe_a) < 0 || pipe(in_pipe_b) < 0 || pipe(out_pipe_a) < 0 || pipe(out_pipe_b) < 0) {
        fprintf(stderr, "ERROR: Failed creating the pipes\n");
        exit(EXIT_FAILURE);
    }

85 86
    char input[__UINT8_MAX__] = ""; ///< An array to save the input to
    int point_num = 0; ///< Save the number of points
87 88 89 90 91
    node_t * head = NULL;

    head = malloc(sizeof(node_t));

    node_t * current = head;
92 93 94 95 96 97 98

    while(fgets(input, __INT8_MAX__, stdin) != NULL) { ///< Read line by line
        /// Split the input by whitespace as delimiter
        char *x = strtok(input, " ");
        char *y = strtok(NULL, " ");

        if(x != NULL && y != NULL) {
99 100 101 102 103 104
            /// Convert to float and save to the list
            current -> points[0] = strtof(x, NULL);
            current -> points[1] = strtof(y, NULL);
            current -> next = malloc(sizeof(node_t));
            current = current -> next;
            point_num++; ///< Increase the list length
105
        } else {
106
            fprintf(stderr, "ERROR: Ill-formed line found\n");
107 108 109 110 111
            exit(EXIT_FAILURE);
        }
    }

    if(feof(stdin) == 0) {
112
        fprintf(stderr, "ERROR: An error interrupted the read\n");
113 114 115 116 117 118 119
        exit(EXIT_FAILURE);
    }

    if(point_num == 1)
        exit(EXIT_SUCCESS);

    if(point_num == 2) {
120 121
        printf("%f %f\n", head -> points[0], head -> points[1]);
        printf("%f %f\n", head -> next -> points[0], head -> next -> points[1]);
122 123 124
        exit(EXIT_SUCCESS);
    }

125 126
    pid_t child_a, child_b; ///< Create variables for the child processes

127
    /// Create first child
128
    switch(child_a = fork()) {
129
        case -1:
130
            fprintf(stderr ,"ERROR: Couldn't fork child\n");
131 132
            exit(EXIT_FAILURE);
        case 0:
133 134 135 136 137 138 139
            /// Child execution
            fprintf(stderr, "Child 1 id: %d\n", getpid());
            close(out_pipe_a[0]);
            close(in_pipe_a[1]);
            close(STDIN_FILENO);
            if(dup2(in_pipe_a[0], STDIN_FILENO) != STDIN_FILENO) {
                fprintf(stderr, "ERROR: Failed duplicating STDIN");
140 141
                exit(EXIT_FAILURE);
            }
142 143 144 145
            execlp(argv[0], argv[0], NULL);

            fprintf(stderr, "ERROR: Failed to load program into child");
            exit(EXIT_FAILURE);
146
        default:
147 148
            /// Parent execution
            /// Create second child
149 150 151 152 153
            switch(child_b = fork()) {
                case -1:
                    fprintf(stderr, "ERROR: Couldn't fork child\n");
                    exit(EXIT_FAILURE);
                case 0:
154 155 156 157 158 159 160
                    /// Child execution
                    fprintf(stderr, "Child 2 id: %d\n", getpid());
                    close(out_pipe_b[0]);
                    close(in_pipe_b[1]);
                    close(STDIN_FILENO);
                    if(dup2(in_pipe_b[0], STDIN_FILENO) != STDIN_FILENO) {
                        fprintf(stderr, "ERROR: Failed duplicating STDIN");
161 162
                        exit(EXIT_FAILURE);
                    }
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
                    execlp(argv[0], argv[0], NULL);

                    fprintf(stderr, "ERROR: Failed to load program into child");
                    exit(EXIT_FAILURE);
                default:
                    /// Parent execution
                    close(in_pipe_a[0]);
                    close(in_pipe_b[0]);
                    close(STDOUT_FILENO);

                    float x_mean = get_x_mean(head);

                    node_t * first_part = malloc(sizeof(node_t));
                    int first_part_len = 1;

                    node_t * second_part = malloc(sizeof(node_t));
                    int second_part_len = 1;

                    node_t * first_part_buff = first_part;
                    node_t * second_part_buff = second_part;

                    /// Separate the lists based on the mean
                    current = head;
                    while(current != NULL) {
                        if(current -> points[0] <= x_mean) {
                            first_part_buff -> points[0] = current -> points[0];
                            first_part_buff -> next = malloc(sizeof(node_t));
                            first_part_buff = first_part_buff -> next;
                            first_part_len ++;
                        } else {
                            second_part_buff -> points[0] = current -> points[0];
                            second_part_buff -> next = malloc(sizeof(node_t));
                            second_part_buff = second_part_buff -> next;
                            second_part_len ++;
                        }
                        current = current -> next;
                    }

                    /**
                     * Send the correct lists to the children
                    **/

                    /// First half
                    if(dup2(in_pipe_a[1], STDIN_FILENO) != STDIN_FILENO) {
                        fprintf(stderr, "ERROR: Failed duplicating STDIN");
208 209
                        exit(EXIT_FAILURE);
                    }
210

211 212 213 214 215 216 217 218 219 220
                    if (write(in_pipe_a[1], first_part_buff, first_part_len*sizeof(node_t)) < 0) {
                        fprintf(stderr, "ERROR: Failed writing to child\n");
                        exit(EXIT_FAILURE);
                    }
                    close(STDOUT_FILENO);
                    ///Second half
                    if(dup2(in_pipe_b[1], STDIN_FILENO) != STDIN_FILENO) {
                        fprintf(stderr, "ERROR: Failed duplicating STDIN");
                        exit(EXIT_FAILURE);
                    }
221

222 223 224 225 226 227 228 229 230 231 232
                    if (write(in_pipe_b[1], first_part_buff, second_part_len*sizeof(node_t)) < 0) {
                        fprintf(stderr, "ERROR: Failed writing to child\n");
                        exit(EXIT_FAILURE);
                    }
                    close(STDOUT_FILENO);

                    /// Wait for the correct exit of the children
                    if(wait_for_termination(child_a) != EXIT_SUCCESS || wait_for_termination(child_b) != EXIT_SUCCESS) {
                        fprintf(stderr, "ERROR: Children didn't terminate successfully");
                        exit(EXIT_FAILURE);
                    }
233

234 235 236 237 238 239 240 241 242 243
                    /// Free the memory
                    free(head);
                    free(first_part);
                    free(first_part_buff);
                    free(second_part);
                    free(second_part_buff);
                    free(current);
                    break;
            }
    }
244 245 246 247 248

    exit(EXIT_SUCCESS);
}

/**
249 250 251
 * @brief Function to calculate the mean of the X coordinates from a points list
 * @details Loops through the points list, gets the sum of X coordinates and returns the mean
 * @param head - a pointer to a list with the points
252 253 254
 * @return mean of all X coordinates
 *
 **/
255 256
float get_x_mean(node_t * head) {
    node_t * current = head;
257
    float x_sum = 0;
258 259 260
    int i = 1;

    while(current != NULL) {
261 262 263
        x_sum += current -> points[0];
        current = current -> next;
        i++;
264
    }
265

266
    return x_sum/(i - 2); ///< TODO: Fix the bug with the 2 more iterations
267 268 269 270 271 272 273 274 275 276 277 278 279 280
}

/**
 * @brief Function to calculate the distance between 2 points
 * @details The function calculates the distance between 2 points
 *          in a Cartesian coordinate system, given their coordinates
 * @param x1, y1 - pair of coordinates for the first point
 *        x2, y2 - pair of coordinates for the second point
 * @return distance between the two points
 *
 **/
float get_distance(float x1, float x2, float y1, float y2) {
    return sqrt(pow((x2 - x1), 2) + pow((y2 - y1), 2));
}
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

/**
 * @brief Function to find the shortest distance in a list
 * @details The function gets a list of points and finds the pair
 *          with the shortest distance between them.
 * @param list - the list with points
 * @return res - a list containing the coordinates of the two closest points
 *
 **/
node_t * find_shortest_distance(node_t * list) {
    node_t * current = list;
    node_t * next = list;

    /// Setup the result list
    node_t * res = malloc(sizeof(node_t));
    res -> next = malloc(sizeof(node_t));

    int current_shortest = 0;
    int new_shortest = 0;

    while(current != NULL) {
        next = current -> next;
        if(next != NULL) {
            new_shortest = get_distance(current -> points[0], next -> points[0], current -> points[1], next -> points[1]);

            if(new_shortest < current_shortest) {
                current_shortest = new_shortest;

                /// Save the pairs
                res -> points[0] = current -> points[0];
                res -> points[1] = current -> points[1];
                res -> next -> points[0] = next -> points[0];
                res -> next -> points[1] = next -> points[1];
            }

            current = next;
        } else
            break;
    }

    return res;
}

/**
 * @briefs Function that waits for a child to close
 * @details The function waits for a child to close.
 *          If it closes successfully, it returns the exit status only.
 *          Otherwise, it prints an error message and then returns the exit status.
 * @param child - the pid of the child process
 * @return the exist status of the child process
 *
 **/
int wait_for_termination(pid_t child) {
    int exit_stat = 0;

    if(waitpid(child, &exit_stat, 0) < 0) {
        fprintf(stderr, "ERROR: Child did not exit successfully\n");
    }

    return WEXITSTATUS(exit_stat);
}